Highly virulent SARS-CoV-2 emerged in Wuhan, China, and rapidly spread across the globe afflicting 14.5 million and killing over 600,000 people. The key factors affecting the severity of COVID-19 include advanced age and respiratory failure requiring mechanical ventilation (MV). Mortality rates estimated for mechanically ventilated patients with SARS-CoV-2-induced respiratory failure are 76.4% in the 18-65 age group and 97.2% in individuals over 65 years. At present, extracorporeal membrane oxygenation (ECMO) remains a life-saving method of choice. It is essentially a lung bypass system for direct oxygenation of the blood. It is an invasive and costly procedure performed only at specialized medical care facilities. China, USA, Germany, France and Israel have already launched large-scale research and clinical studies of non-invasive approaches to improving the efficacy of oxygen therapy in patients with complicated viral pneumonia, such as hyperbaric oxygen therapy (HBOT). HBOT is a well-established treatment for anaerobic and aerobic infections accompanied by soft tissue necrosis, carbon monoxide poisoning, stubborn wounds, including non-healing diabetic ulcers, complications of radiation therapy, stroke sequelae, brain injuries, decompression sickness, and other conditions. The use of HBTO in patients with viral infection, pulmonary edema and pneumonia is supported by the laws of physics and clinical/physiological effects in response to the exposure of elevated air pressure and hyperoxic environment. This review provides rationale for using hyperbaric oxygenation therapy in patients with SARS-CoV-2-induced viral pneumonia and presents the first data on the beneficial effects of HBTO in Chinese patients with COVID-19 complications.
CITATION STYLE
Mozgovoy, E., Udalov, Y., & Ochkolias, M. (2020). Hyperbaric oxygenation therapy for treating complicated COVID-19: first experience. Medicine of Extreme Situations, ((3)2020). https://doi.org/10.47183/mes.2020.010
Mendeley helps you to discover research relevant for your work.