Effective lactic acid (LA) production from lignocellulosic biomass materials is challenged by several limitations related to pentose sugar utilization, inhibitory compounds, and/or fermentation conditions. In this study, a newly isolated Bacillus coagulans strain Azu-10 was obtained and showed homofermentative LA production from xylose with optimal fermentation conditions at 50◦C and pH 7.0. Growth of strain Azu-10 and LA-fermentation efficiency were evaluated in the presence of various lignocellulose-derived inhibitors (furans, carboxylic acids, and phenols) at different con-centrations. Furanic lignocellulosic-derived inhibitors were completely detoxified. The strain has exhibited high biomass, complete xylose consumption, and high LA production in the presence of 1.0–4.0 g/L furfural and 1.0–5.0 g/L of hydroxymethyl furfural, separately. Moreover, strain Azu-10 exhibited high LA production in the presence of 5.0–15.0 g/L acetic acid, 5.0 g/L of formic acid, and up to 7.0 g/L of levulinic acid, separately. Besides, for phenolic compounds, p-coumaric acid was most toxic at 1.0 g/L, while syringaldehyde or p-hydroxybenzaldehyde, and vanillin at 1.0 g/L did not inhibit LA fermentation. The present study provides an interesting potential candidate for the thermophilic LA fermentation from lignocellulose-derived substrates at the industrial biorefinery level.
CITATION STYLE
Abdel-Rahman, M. A., Hassan, S. E. D., Fouda, A., Radwan, A. A., Barghoth, M. G., & Desouky, S. G. (2021). Evaluating the effect of lignocellulose-derived microbial inhibitors on the growth and lactic acid production by bacillus coagulans azu-10. Fermentation, 7(1). https://doi.org/10.3390/fermentation7010017
Mendeley helps you to discover research relevant for your work.