An airborne albedometer including a low-cost, precise, and fast sensor head horizontal stabilization system was developed to measure spectral down- and upward irradiances between 400- and 1000-nm wavelength. It is installed on a small research aircraft (type Partenavia P68-B), but it can easily be mounted on other aircraft as well. The stabilization unit keeps the two radiation sensor heads (up- and downward looking) of the albedometer in a horizontal position during the flight with an accuracy of better than ±0.2° over a range of pitch and roll angles of ±6°. The system works properly for angular velocities up to 3° s-1 with a response time of the horizontal adjustment of 43 ms. Thus it can be applied even under turbulent atmospheric conditions. The limitations of the stabilization have been determined by laboratory and in-flight performance tests. As a result it is found that the new horizontal stabilization system ensures that misalignment-related uncertainties of the measured irradiances are less than 1% for solar zenith angles up to 70°. This does not include uncertainties due to deviations from the ideal cosine response of the optical inlet system and measurement errors resulting from absolute calibration problems. An example of downward spectral irradiances measured under cloudless conditions above and within a distinct boundary layer with enhanced aerosol particle concentrations shows the potential of the new instrument for improved radiative budget measurements in the atmosphere.
CITATION STYLE
Wendisch, M., Müller, D., Schell, D., & Heintzenberg, J. (2001). An airborne spectral albedometer with active horizontal stabilization. Journal of Atmospheric and Oceanic Technology, 18(11), 1856–1866. https://doi.org/10.1175/1520-0426(2001)018<1856:AASAWA>2.0.CO;2
Mendeley helps you to discover research relevant for your work.