Orphan Genes in Crop Improvement: Enhancing Potato Tuber Protein without Impacting Yield

5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Qua-Quine Starch (QQS), an Arabidopsis thaliana orphan gene, and its interactor, Arabidopsis Nuclear Factor Y subunit C4 (AtNF-YC4), can increase the total leaf and seed protein in different plants. Despite their potential in developing protein-rich crop varieties, their influence on the protein content of the stem, modified stem, and tuber was never investigated. Potato (Solanum tuberosum) is one of the most valuable food crops worldwide. This staple food is rich in starch, vitamins (B6, C), phenolics, flavonoids, polyamines, carotenoids, and various minerals but lacks adequate proteins necessary for a healthy human diet. Here we expressed A. thaliana QQS (AtQQS) and overexpressed S. tuberosum NF-YC4 (StNF-YC4) in potatoes to determine their influence on the composition and morphological characteristics of potato tubers. Our data demonstrated higher protein and reduced starch content in potato tubers without significantly compromising the tuber yield, shape, and numbers, when QQS was expressed or StNF-YC4 was overexpressed. Publicly available expression data, promoter region, and protein–protein interaction analyses of StNF-YC4 suggest its potential functionality in potato storage protein, metabolism, stress resistance, and defense against pests and pathogens. The overall outcomes of this study support QQS and NF-YC4’s potential utilization as tools to enhance tuber protein content in plants.

Cite

CITATION STYLE

APA

Tanvir, R., Wang, L., Zhang, A., & Li, L. (2022). Orphan Genes in Crop Improvement: Enhancing Potato Tuber Protein without Impacting Yield. Plants, 11(22). https://doi.org/10.3390/plants11223076

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free