Inscit: Information-Seeking Conversations with Mixed-Initiative Interactions

2Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

In an information-seeking conversation, a user may ask questions that are under-specified or unanswerable. An ideal agent would interact by initiating different response types according to the available knowledge sources. However, most current studies either fail to or artificially incorporate such agent-side initiative. This work presents InSCIt, a dataset for Information-Seeking Conversations with mixed-initiative Interactions. It contains 4.7K user-agent turns from 805 human-human conversations where the agent searches over Wikipedia and either directly answers, asks for clarification, or provides relevant information to address user queries. The data supports two subtasks, evidence passage identification and response generation, as well as a human evaluation protocol to assess model performance. We report results of two systems based on state-of-the-art models of conversational knowledge identification and opendomain question answering. Both systems significantly underperform humans, suggesting ample room for improvement in future studies.1

Cite

CITATION STYLE

APA

Wu, Z., Parish, R., Cheng, H., Min, S., Ammanabrolu, P., Ostendorf, M., & Hajishirzi, H. (2023). Inscit: Information-Seeking Conversations with Mixed-Initiative Interactions. Transactions of the Association for Computational Linguistics, 11, 453–468. https://doi.org/10.1162/tacl_a_00559

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free