Depletion of cellular energy activates the AMP-activated protein kinase (AMPK) to favor energy-producing catabolic processes during tumorigenesis. Using a panel of in vitro cell lines and resected tumors, we investigated the therapeutic value of manipulating AMPK in prostate cancer (PC). Phospho-AMPK expression was significantly elevated in human PC cells and clinical PC samples. In clinical PC, we observed a trend for increasing phospho-AMPK with increasing Gleason sum score; Phospho-AMPK expression was associated with phospho-ACC (p=0.0023). Using the paired PC3 and PC3M cells to model progressive androgen-independent PC, treatment with either 5-aminoimidazole-4-carboxamide riboside (AICAR) or A-769662 suppressed proliferation, migration and invasion in both cell lines, and down-regulated mTOR and P70S6Ki levels regardless of the Akt status. Involvement of AMPK was confirmed by Compound C (AMPK inhibitor) and siRNA-mediated AMPK silencing. Despite similar functional responses in PC3 and PC3M cells, AMPK activation resulted in sustained phospho-Akt activation in PC3M cells, but not in PC3 cells. This prompted the addition of the PI3K inhibitor LY-294002 to AICAR treatment of PC3M cells in a proliferation assay. Interestingly, we found no synergistic effects upon combined treatment. Collectively, these findings support AMPK as a potential therapeutic target independent of PI3K/Akt signalling.
CITATION STYLE
Choudhury, Y., Yang, Z., Ahmad, I., Nixon, C., Salt, I. P., & Leung, H. Y. (2014). AMP-activated protein kinase (AMPK) as a potential therapeutic target independent of PI3K/Akt signaling in prostate cancer. Oncoscience, 1(6), 446–456. https://doi.org/10.18632/oncoscience.49
Mendeley helps you to discover research relevant for your work.