We have already survey many significant approaches for many years because there are many crucial contributions of the sentiment classification which can be applied in everyday life, such as in political activities, commodity production, and commercial activities. We have proposed a novel model using a Latent Semantic Analysis (LSA) and a Dennis Coefficient (DNC) for big data sentiment classification in English. Many LSA vectors (LSAV) have successfully been reformed by using the DNC. We use the DNC and the LSAVs to classify 11,000,000 documents of our testing data set to 5,000,000 documents of our training data set in English. This novel model uses many sentiment lexicons of our basis English sentiment dictionary (bESD). We have tested the proposed model in both a sequential environment and a distributed network system. The results of the sequential system are not as good as that of the parallel environment. We have achieved 88.76% accuracy of the testing data set, and this is better than the accuracies of many previous models of the semantic analysis. Besides, we have also compared the novel model with the previous models, and the experiments and the results of our proposed model are better than that of the previous model. Many different fields can widely use the results of the novel model in many commercial applications and surveys of the sentiment classification.
CITATION STYLE
Phu, V. N., & Tran, V. T. N. (2018). Latent semantic analysis using a dennis coefficient for english sentiment classification in a parallel system. International Journal of Computers, Communications and Control, 13(3), 408–428. https://doi.org/10.15837/ijccc.2018.3.3044
Mendeley helps you to discover research relevant for your work.