TASEP modelling provides a parsimonious explanation for the ability of a single uorf to derepress translation during the integrated stress response

27Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Translation initiation is the rate-limiting step of protein synthesis that is downregulated during the Integrated Stress Response (ISR). Previously, we demonstrated that most human mRNAs that are resistant to this inhibition possess translated upstream open reading frames (uORFs), and that in some cases a single uORF is sufficient for the resistance. Here we developed a computational model of Initiation Complexes Interference with Elongating Ribosomes (ICIER) to gain insight into the mechanism. We explored the relationship between the flux of scanning ribosomes upstream and downstream of a single uORF depending on uORF features. Paradoxically, our analysis predicts that reducing ribosome flux upstream of certain uORFs increases initiation downstream. The model supports the derepression of downstream translation as a general mechanism of uORF-mediated stress resistance. It predicts that stress resistance can be achieved with long slowly decoded uORFs that do not favor translation reinitiation and that start with initiators of low leakiness.

Cite

CITATION STYLE

APA

Andreev, D. E., Arnold, M., Kiniry, S. J., Loughran, G., Michel, A. M., Rachinskii, D., & Baranov, P. V. (2018). TASEP modelling provides a parsimonious explanation for the ability of a single uorf to derepress translation during the integrated stress response. ELife, 7. https://doi.org/10.7554/eLife.32563

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free