Enhancing Path Planning Capabilities of Automated Guided Vehicles in Dynamic Environments: Multi-Objective PSO and Dynamic-Window Approach

7Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Automated guided vehicles (AGVs) are vital for optimizing the transport of material in modern industry. AGVs have been widely used in production, logistics, transportation, and commerce, enhancing productivity, lowering labor costs, improving energy efficiency, and ensuring safety. However, path planning for AGVs in complex and dynamic environments remains challenging due to the computation of obstacle avoidance and efficient transport. This study proposes a novel approach that combines multi-objective particle swarm optimization (MOPSO) and the dynamic-window approach (DWA) to enhance AGV path planning. Optimal AGV trajectories considering energy consumption, travel time, and collision avoidance were used to model the multi-objective functions for dealing with the outcome-feasible optimal solution. Empirical findings and results demonstrate the approach’s effectiveness and efficiency, highlighting its potential for improving AGV navigation in real-world scenarios.

References Powered by Scopus

A fast and elitist multiobjective genetic algorithm: NSGA-II

40564Citations
N/AReaders
Get full text

Genetic algorithms

4864Citations
N/AReaders
Get full text

The dynamic window approach to collision avoidance

2759Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Exploring the Molecular Terrain: A Survey of Analytical Methods for Biological Network Analysis

6Citations
N/AReaders
Get full text

Improving Safety and Efficiency of Industrial Vehicles by Bio-Inspired Algorithms

0Citations
N/AReaders
Get full text

Evolving Effective Drug Therapies with Multi-objective Genetic Algorithm

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Dao, T. K., Ngo, T. G., Pan, J. S., Nguyen, T. T. T., & Nguyen, T. T. (2024). Enhancing Path Planning Capabilities of Automated Guided Vehicles in Dynamic Environments: Multi-Objective PSO and Dynamic-Window Approach. Biomimetics, 9(1). https://doi.org/10.3390/biomimetics9010035

Readers' Seniority

Tooltip

Lecturer / Post doc 3

75%

Researcher 1

25%

Readers' Discipline

Tooltip

Engineering 3

75%

Computer Science 1

25%

Article Metrics

Tooltip
Mentions
Blog Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free