Atmospheric mixed layer convergence from observed MJO sea surface temperature anomalies

13Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Madden-Julian oscillation (MJO) dominates tropical weather on intraseasonal 30-90-day time scales, yet mechanisms for its generation, maintenance, and propagation remain unclear. Although surface moist static energy (MSE) flux is greatest under strong winds in the convective phase, sea surface temperature (SST) warms by;0.38C in the clear nonconvective phase of the MJO. Winds converging into the hydrostatic low pressure under warm air over the warm SST increase the vertically integrated MSE. We estimate column-integrated MSE convergence using a model of mixed layer (ML) winds balancing friction, planetary rotation, and hydrostatic pressure gradients. Small (0.3 K) SST anomalies associated with the MJO drive 7 W m22 net column MSE convergence averaged over the equatorial Indian Ocean ahead of MJO deep convection. The MSE convergence is in the right phase to contribute to MJO generation and propagation. It is on the order of the total MSE tendency previously assessed from reanalysis, and greater than surface heat flux anomalies driven by intraseasonal SST fluctuations.

Cite

CITATION STYLE

APA

Szoeke, S. P. D. E., & Maloney, E. D. (2020). Atmospheric mixed layer convergence from observed MJO sea surface temperature anomalies. Journal of Climate, 33(2), 547–558. https://doi.org/10.1175/JCLI-D-19-0351.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free