This is a review of recent research exploring and extending present-day quantum computing capabilities for fusion energy science applications. We begin with a brief tutorial on both ideal and open quantum dynamics, universal quantum computation, and quantum algorithms. Then, we explore the topic of using quantum computers to simulate both linear and nonlinear dynamics in greater detail. Because quantum computers can only efficiently perform linear operations on the quantum state, it is challenging to perform nonlinear operations that are generically required to describe the nonlinear differential equations of interest. In this work, we extend previous results on embedding nonlinear systems within linear systems by explicitly deriving the connection between the Koopman evolution operator, the Perron-Frobenius evolution operator, and the Koopman-von Neumann evolution (KvN) operator. We also explicitly derive the connection between the Koopman and Carleman approaches to embedding. Extension of the KvN framework to the complex-analytic setting relevant to Carleman embedding, and the proof that different choices of complex analytic reproducing kernel Hilbert spaces depend on the choice of Hilbert space metric are covered in the appendixes. Finally, we conclude with a review of recent quantum hardware implementations of algorithms on present-day quantum hardware platforms that may one day be accelerated through Hamiltonian simulation. We discuss the simulation of toy models of wave-particle interactions through the simulation of quantum maps and of wave-wave interactions important in nonlinear plasma dynamics.
CITATION STYLE
Joseph, I., Shi, Y., Porter, M. D., Castelli, A. R., Geyko, V. I., Graziani, F. R., … Dubois, J. L. (2023, January 1). Quantum computing for fusion energy science applications. Physics of Plasmas. American Institute of Physics Inc. https://doi.org/10.1063/5.0123765
Mendeley helps you to discover research relevant for your work.