Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite

54Citations
Citations of this article
115Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The aim of this study was evaluated the biofilm formation by Staphylococcus aureus 4E and Salmonella spp. under mono and dual-species biofilms, onto stainless steel 316 (SS) and polypropylene B (PP), and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. The biofilms were developed by immersion of the surfaces in TSB by 10 d at 37 °C. The results showed that in monospecies biofilms the type of surface not affected the cellular density (p > 0.05). However, in dual-species biofilms on PP the adhesion of Salmonella spp. was favored, 7.61 ± 0.13 Log10 CFU/cm2, compared with monospecies biofilms onto the same surface, 5.91 ± 0.44 Log10 CFU/cm2 (p < 0.05). The mono and dual-species biofilms were subjected to disinfection treatments; and the most effective disinfectant was peracetic acid (3500 ppm), reducing by more than 5 Log10 CFU/cm2, while the least effective was cetrimonium bromide. In addition, S. aureus 4E and Salmonella spp. were more resistant to the disinfectants in mono than in dual-species biofilms (p < 0.05). Therefore, the interspecies interactions between S. aureus 4E and Salmonella spp. had a negative effect on the antimicrobial resistance of each microorganism, compared with the monospecies biofilms.

Cite

CITATION STYLE

APA

Iñiguez-Moreno, M., Gutiérrez-Lomelí, M., Guerrero-Medina, P. J., & Avila-Novoa, M. G. (2018). Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. Brazilian Journal of Microbiology, 49(2), 310–319. https://doi.org/10.1016/j.bjm.2017.08.002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free