To accurately recognize ordinary handwritten Chinese characters, it is necessary to recognize the normative level of these characters. This study proposes methods to quantitatively evaluate and recognize these characters based on their similarities. Three different types of similarities, including correlation coefficient, pixel coincidence degree, and cosine similarity, are calculated between handwritten and printed Song typeface Chinese characters. Eight features are derived from the similarities and used to verify the evaluation performance and an artificial neural network is used to recognize the character content. The results demonstrate that our proposed methods deliver satisfactory evaluation effectiveness and recognition accuracy (up to 98%~100%). This indicates that it is possible to improve the accuracy in recognition of ordinary handwritten Chinese characters by evaluating the normative level of these characters and standardizing writing actions in advance. Our study can offer some enlightenment for developing methods for the identification of handwritten Chinese characters used in transaction processing activities.
CITATION STYLE
Zhao, Y., Zhang, X., Fu, B., Zhan, Z., Sun, H., Li, L., & Zhang, G. (2022). Evaluation and Recognition of Handwritten Chinese Characters Based on Similarities. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178521
Mendeley helps you to discover research relevant for your work.