Local log-Euclidean covariance matrix (L 2ECM) for image representation and its applications

31Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper presents Local Log-Euclidean Covariance Matrix (L 2ECM) to represent neighboring image properties by capturing correlation of various image cues. Our work is inspired by the structure tensor which computes the second-order moment of image gradients for representing local image properties, and the Diffusion Tensor Imaging which produces tensor-valued image characterizing the local tissue structure. Our approach begins with extraction of raw features consisting of multiple image cues. For each pixel we compute a covariance matrix in its neighboring region, producing a tensor-valued image. The covariance matrices are symmetric and positive-definite (SPD) which forms a Riemannian manifold. In the Log-Euclidean framework, the SPD matrices form a Lie group equipped with Euclidean space structure, which enables common Euclidean operations in the logarithm domain. Hence, we compute the covariance matrix logarithm, obtaining the pixel-wise symmetric matrix. After half-vectorization we obtain the vector-valued L 2ECM image, which can be flexibly handled with Euclidean operations while preserving the geometric structure of SPD matrices. The L 2ECM features can be used in diverse image or vision tasks. We demonstrate some applications of its statistical modeling by simple second-order central moment and achieve promising performance. © 2012 Springer-Verlag.

Cite

CITATION STYLE

APA

Li, P., & Wang, Q. (2012). Local log-Euclidean covariance matrix (L 2ECM) for image representation and its applications. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7574 LNCS, pp. 469–482). https://doi.org/10.1007/978-3-642-33712-3_34

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free