Resveratrol was glucosylated to its 3- and 4′-β-glucosides by cultured cells of Phytolacca americana. On the other hand, cultured P. americana cells glucosylated pterostilbene to its 4′-β-glucoside. P. americana cells converted piceatannol into its 4′-β-glucoside. The 3-and 4′-β-glucosides of resveratrol were further glucosylated to 3- and 4′-β-maltosides of resveratrol, 4′-β-maltoside of which is a new compound, by cyclodextrin glucanotransferase. Resveratrol 3-β-glucoside and 3-β-maltoside showed low 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging activity, whereas other glucosides had no radicalscavenging activity. Piceatannol 4′-β-glucoside showed the strongest inhibitory activity among the stilbene glycosides towards histamine release from rat peritoneal mast cells. Pterostilbene 4′-β-glucoside showed high phosphodiesterase inhibitory activity.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Sato, D., Shimizu, N., Shimizu, Y., Akagi, M., Eshita, Y., Ozaki, S. I., … Kubota, N. (2014). Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti-oxidant, anti-allergic, and neuroprotective activities. Bioscience, Biotechnology and Biochemistry, 78(7), 1123–1128. https://doi.org/10.1080/09168451.2014.921551