MOCVD growth of high purity Ga2O3epitaxial films using trimethylgallium precursor

N/ACitations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report on the growth of β-Ga2O3 thin films using trimethylgallium (TMGa) as a source for gallium and pure O2 for oxidation. The growth rate of the films was found to linearly increase with the increase in the molar flow rate of TMGa and reach as high as ∼6 μm/h at a flow rate of 580 μmol/min. High purity, lightly Si-doped homoepitaxial β-Ga2O3 films with a good surface morphology, a record low temperature electron mobility exceeding 23 000 cm2/V s at 32 K, and an acceptor concentration of 2 × 1013 cm-3 were realized, showing an excellent purity film. Films with room temperature (RT) electron mobilities ranging from 71 cm2/V s to 138 cm2/V s with the corresponding free carrier densities between ∼1.1 × 1019 cm-3 and ∼1.5 × 1016 were demonstrated. For layers with the doping concentration in the range of high-1017 and low-1018 cm-3, the RT electron mobility values were consistently more than 100 cm2/V s, suggesting that TMGa is suitable to grow channel layers for lateral devices, such as field effect transistors. The results demonstrate excellent purity of the films produced and confirm the suitability of the TMGa precursor for the growth of device quality β-Ga2O3 films at a fast growth rate, meeting the demands for commercializing Ga2O3-based high voltage power devices by metalorganic chemical vapor deposition.

Cite

CITATION STYLE

APA

Seryogin, G., Alema, F., Valente, N., Fu, H., Steinbrunner, E., Neal, A. T., … Osinsky, A. (2020). MOCVD growth of high purity Ga2O3epitaxial films using trimethylgallium precursor. Applied Physics Letters, 117(26). https://doi.org/10.1063/5.0031484

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free