Microalgae are a promising feedstock for bioethanol production, essentially due to their high growth rates and absence of lignin. Hydrolysis—where the monosaccharides are released for further fermentation—is considered a critical step, and its optimization is advised for each raw material. The present study focuses on the thermal acid hydrolysis (with sulfuric acid) of Aurantiochytrium sp. through a response surface methodology (RSM), studying the effect of acid concentration, hydrolysis time and biomass/acid ratio on both sugar concentration of the hydrolysate and biomass conversion yield. Preliminary studies allowed to establish the range of the variables to be optimized. The obtained models predicted a maximum sugar concentration (18.05 g/L; R2 = 0.990) after 90 min of hydrolysis, using 15% (w/v) biomass/acid ratio and sulfuric acid at 3.5% (v/v), whereas the maximum conversion yield (12.86 g/100 g; R2 = 0.876) was obtained using 9.3% (w/v) biomass/acid ratio, maintaining the other parameters. Model outputs indicate that the biomass/acid ratio and time are the most influential parameters on the sugar concentration and yield models, respectively. The study allowed to obtain a predictive model that is very well adjusted to the experimental data to find the best saccharification conditions for the Aurantiochytrium sp. microalgae.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Oliveira, J., Pardilhó, S., Dias, J. M., & Pires, J. C. M. (2023). Microalgae to Bioenergy: Optimization of Aurantiochytrium sp. Saccharification. Biology, 12(7). https://doi.org/10.3390/biology12070935