Primitive fitting aased on the efficient multiBaySAC algorithm

20Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Although RANSAC is proven to be robust, the original RANSAC algorithm selects hypothesis sets at random, generating numerous iterations and high computational costs because many hypothesis sets are contaminated with outliers. This paper presents a conditional sampling method, multiBaySAC (Bayes SAmple Consensus), that fuses the BaySAC algorithm with candidate model parameters statistical testing for unorganized 3D point clouds to fit multiple primitives. This paper first presents a statistical testing algorithm for a candidate model parameter histogram to detect potential primitives. As the detected initial primitives were optimized using a parallel strategy rather than a sequential one, every data point in the multiBaySAC algorithm was assigned to multiple prior inlier probabilities for initial multiple primitives. Each prior inlier probability determined the probability that a point belongs to the corresponding primitive. We then implemented in parallel a conditional sampling method: BaySAC. With each iteration of the hypothesis testing process, hypothesis sets with the highest inlier probabilities were selected and verified for the existence of multiple primitives, revealing the fitting for multiple primitives. Moreover, the updated version of the initial probability was implemented based on a memorable form of Bayes' Theorem, which describes the relationship between prior and posterior probabilities of a data point by determining whether the hypothesis set to which a data point belongs is correct. The proposed approach was tested using real and synthetic point clouds. The results show that the proposed multi-BaySAC algorithm can achieve a high computational efficiency (averaging 34% higher than the efficiency of the sequential RANSAC method) and fitting accuracy (exhibiting good performance in the intersection of two primitives), whereas the sequential RANSAC framework clearly suffers from over- and under-segmentation problems. Future work will aim at further optimizing this strategy through its application to other problems such as multiple point cloud co-registration and multiple image matching.

Cite

CITATION STYLE

APA

Kang, Z., & Li, Z. (2015). Primitive fitting aased on the efficient multiBaySAC algorithm. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0117341

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free