Hierarchically Porous Zirconia Monolith Fabricated from Bacterial Cellulose and Preceramic Polymer

10Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

A hierarchically porous zirconia (ZrO2) monolith was successfully fabricated by using bacterial cellulose (BC) as a biotemplate and preceramic polymer as a zirconium resource, via freeze-drying and two-step calcination process. Images of scanning electron microscopy showed that the ZrO2 monolith well-replicated a three-dimensional reticulated structure of pristine BC and possessed good morphology stability till 1100 °C in air. Results of N2 adsorption/desorption and mercury porosimetry analysis revealed the hierarchically porous structure and large specific area (9.7 m2·g-1) of the ZrO2 monolith, respectively. Patterns of X-ray powder diffraction indicated that the monoclinic phase and tetragonal phase coexisted in the ZrO2 monolith with the former as the main phase. In addition, the ZrO2 monolith possessed low bulk density (0.13 g·cm-3) and good mechanical strength. These properties suggest that the as-prepared ZrO2 monolith has a great potential to serve as an ideal catalyst or catalyst support.

Cite

CITATION STYLE

APA

Zhang, B. X., Zhang, Y., Luo, Z., Han, W., Qiu, W., & Zhao, T. (2018). Hierarchically Porous Zirconia Monolith Fabricated from Bacterial Cellulose and Preceramic Polymer. ACS Omega, 3(4), 4688–4694. https://doi.org/10.1021/acsomega.8b00098

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free