Background: Despite endurance athletes recording their training data electronically, researchers in sports cardiology rely on questionnaires to quantify training load. This is due to the complexity of quantifying large numbers of training files. We aimed to develop a semiautomatic postprocessing tool to quantify training load in clinical studies. Methods: Training data were collected from two prospective athlete’s heart studies (Master Athlete’s Heart study and Prospective Athlete Heart study). Using in-house developed software, maximal heart rate (MaxHR) and training load were calculated from heart rate monitored during cumulative training sessions. The MaxHR in the lab was compared with the MaxHR in the field. Lucia training impulse score, based on individually based exercise intensity zones, and Edwards training impulse, based on MaxHR in the field, were compared. A questionnaire was used to determine the number of training sessions and training hours per week. Results: Forty-three athletes recorded their training sessions using a chest-worn heart rate monitor and were selected for this analysis. MaxHR in the lab was significantly lower compared with MaxHR in the field (183 ± 12 bpm vs. 188 ± 13 bpm, p < .01), but correlated strongly (r = .81, p < .01) with acceptable limits of agreement (±15.4 bpm). An excellent correlation was found between Lucia training impulse score and Edwards training impulse (r = .92, p < .0001). The quantified number of training sessions and training hours did not correlate with the number of training sessions (r = .20) and training hours (r = −.12) reported by questionnaires. Conclusion: Semiautomatic measurement of training load is feasible in a wide age group. Standard exercise questionnaires are insufficiently accurate in comparison to objective training load quantification.
CITATION STYLE
Dausin, C., Ruiz-Carmona, S., De Bosscher, R., Janssens, K., Herbots, L., Heidbuchel, H., … Claessen, G. (2023). Semiautomatic Training Load Determination in Endurance Athletes. Journal for the Measurement of Physical Behaviour, 6(3), 193–201. https://doi.org/10.1123/jmpb.2023-0016
Mendeley helps you to discover research relevant for your work.