Thermoelasticity of Fe3+- and Al-bearing bridgmanite: Effects of iron spin crossover

47Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report ab initio (LDA + Usc) calculations of thermoelastic properties of ferric iron (Fe3+)- and aluminum (Al)-bearing bridgmanite (MgSiO3 perovskite), the main Earth forming phase, at relevant pressure and temperature conditions and compositions. Three coupled substitutions, namely, [Al]Mg-[Al]Si, [Fe3+]Mg-[Fe3+]Si, and [Fe3+]Mg-[Al]Si have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental data available. In the case of [Fe3+]Mg-[Fe3+]Si substitution, the high-spin (S = 5/2) to low-spin (S = 1/2) crossover in [Fe3+]Si induces a volume collapse and elastic anomalies across the transition region. However, the associated anomalies should disappear in the presence of aluminum in the most favorable substitution, i.e., [Fe3+]Mg-[Al]Si. Calculated elastic properties along a lower mantle model geotherm suggest that the elastic behavior of bridgmanite with simultaneous substitution of Fe2O3 and Al2O3 in equal proportions or with Al2O3 in excess should be similar to that of (Mg,Fe2+)SiO3 bridgmanite. However, excess of Fe2O3 should produce elastic anomalies in the crossover pressure region.

Cite

CITATION STYLE

APA

Shukla, G., Cococcioni, M., & Wentzcovitch, R. M. (2016, June 16). Thermoelasticity of Fe3+- and Al-bearing bridgmanite: Effects of iron spin crossover. Geophysical Research Letters. Blackwell Publishing Ltd. https://doi.org/10.1002/2016GL069332

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free