The Gram-positive bacterium Staphylococcus carnosus (S. carnosus) TM300 is an apathogenic staphylococcal species commonly used in meat starter cultures. As with all Gram-positive bacteria, its cytoplasmic membrane is surrounded by a thick peptidoglycan (PGN) or murein sacculus consisting of several layers of glycan strands cross-linked by peptides. In contrast to pathogenic staphylococci, mainly Staphylococcus aureus (S. aureus), the chemical composition of S. carnosus PGN is not well studied so far. UPLC/MS analysis of enzymatically digested S. carnosus TM300 PGN revealed substantial differences in its composition compared to the known pattern of S. aureus. While in S. aureus the uncross-linked stem peptide consists of a pentapeptide, in S. carnosus, this part of the PGN is shortened to tripeptides. Furthermore, we found the PGN composition to vary when cells were incubated under certain conditions. The collective overproduction of HlyD, FtsE and FtsX-a putative protein complex interacting with penicillin-binding protein 2 (PBP2)-caused the reappearance of classical penta stem peptides. In addition, under high sugar conditions, tetra stem peptides occur due to overflow metabolism. This indicates that S. carnosus TM300 cells adapt to various conditions by modification of their PGN.
CITATION STYLE
Deibert, J., Kühner, D., Stahl, M., Koeksoy, E., & Bertsche, U. (2016). The peptidoglycan pattern of Staphylococcus carnosus TM300—detailed analysis and variations due to genetic and metabolic influences. Antibiotics, 5(4). https://doi.org/10.3390/antibiotics5040033
Mendeley helps you to discover research relevant for your work.