Preparation and Characterization of Spray-Dried Hybrid Nanocrystal–Amorphous Solid Dispersions (HyNASDs) for Supersaturation Enhancement of a Slowly Crystallizing Drug

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

We prepared hybrid nanocrystal–amorphous solid dispersions (HyNASDs) to examine their supersaturation capability in the release of a poorly soluble drug, itraconazole (ITZ), a slow crystallizer during dissolution. The HyNASD formulations included a polymer (HPC: hydroxypropyl cellulose, Sol: Soluplus, or VA64: Kollidon-VA64) and a surfactant (SDS: sodium dodecyl sulfate). Additionally, the dissolution performance of the HyNASDs and ASDs was compared. To this end, wet-milled aqueous nanosuspensions containing a 1:5 ITZ:polymer mass ratio with/without SDS as well as solutions of the same ratio without SDS in dichloromethane were spray-dried. XRPD–DSC confirmed that ASDs were formed upon spray drying the solution-based feeds, whereas HyNASDs (~5–30% amorphous) were formed with the nanosuspension-based feeds. SDS aided to stabilize the ITZ nanosuspensions and increase the amorphous content in the spray-dried powders. During dissolution, up to 850% and 790% relative supersaturation values were attained by HyNASDs with and without SDS, respectively. Due to the stronger molecular interaction between ITZ–Sol than ITZ–HPC/VA64 and micellar solubilization by Sol, Sol-based HyNASDs outperformed HPC/VA64-based HyNASDs. While the ASD formulations generated greater supersaturation values (≤1670%) than HyNASDs (≤790%), this extent of supersaturation from a largely nanocrystalline formulation (HyNASD) has not been achieved before. Overall, HyNASDs could boost drug release from nanoparticle-based formulations and may render them competitive to ASDs.

Cite

CITATION STYLE

APA

Rahman, M., Radgman, K., Tarabokija, J., Ahmad, S., & Bilgili, E. (2023). Preparation and Characterization of Spray-Dried Hybrid Nanocrystal–Amorphous Solid Dispersions (HyNASDs) for Supersaturation Enhancement of a Slowly Crystallizing Drug. Nanomaterials, 13(17). https://doi.org/10.3390/nano13172419

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free