Facial expression recognition (FER) techniques can be widely used in human-computer interaction, intelligent robots, intelligent monitoring, and other domains. Currently, FER methods based on deep learning have become the mainstream schemes. However, these methods have some problems, such as a large number of parameters, difficulty in being applied to embedded processors, and the fact that recognition accuracy is affected by facial deflection. To solve the problem of a large number of parameters, we propose a DSC-DenseNet model, which improves the standard convolution in DenseNet to depthwise separable convolution (DSC). To solve the problem wherein face deflection affects the recognition effect, we propose a posture normalization model based on GAN: a GAN with two local discriminators (LD-GAN) that strengthen the discriminatory abilities of the expression-related local parts, such as the parts related to the eyes, eyebrows, mouth, and nose. These discriminators improve the model’s ability to retain facial expressions and evidently benefits FER. Quantitative and qualitative experimental results on the Fer2013 and KDEF datasets have consistently shown the superiority of our FER method when working with multi-pose face images.
CITATION STYLE
Dong, J., Zhang, Y., & Fan, L. (2023). A Multi-View Face Expression Recognition Method Based on DenseNet and GAN. Electronics (Switzerland), 12(11). https://doi.org/10.3390/electronics12112527
Mendeley helps you to discover research relevant for your work.