We theoretically study the interaction of ultrashort optical pulses with gapped graphene. Such a strong pulse results in a finite conduction band population and a corresponding electric current, both during and after the pulse. Since gapped graphene has broken inversion symmetry, it has an axial symmetry about the y -axis but not about the x-axis. We show that, in this case, if the linear pulse is polarized along the x-axis, the rectified electric current is generated in the y direction. At the same time, the conduction band population distribution in the reciprocal space is symmetric about the x-axis. Thus, the rectified current in gapped graphene has an inter-band origin, while the intra-band contribution to the rectified current is zero.
CITATION STYLE
Oliaei Motlagh, S. A., Nematollahi, F., Mitra, A., Zafar, A. J., Apalkov, V., & Stockman, M. I. (2020). Ultrafast optical currents in gapped graphene. Journal of Physics Condensed Matter, 32(6). https://doi.org/10.1088/1361-648X/ab4fc7
Mendeley helps you to discover research relevant for your work.