Local correlated sampling Monte Carlo calculations in the TFM neutronics approach for spatial and point kinetics applications

  • Laureau A
  • Buiron L
  • Fontaine B
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

These studies are performed in the general framework of transient coupled calculations with accurate neutron kinetics models. This kind of application requires a modeling of the influence on the neutronics of the macroscopic cross-section evolution. Depending on the targeted accuracy, this feedback can be limited to the reactivity for point kinetics, or can take into account the redistribution of the power in the core for spatial kinetics. The local correlated sampling technique for Monte Carlo calculation presented in this paper has been developed for this purpose, i.e. estimating the influence on the neutron transport of a local variation of different parameters such as sodium density or fuel Doppler effect. This method is associated to an innovative spatial kinetics model named Transient Fission Matrix, which condenses the time-dependent Monte Carlo neutronic response in Green functions. Finally, an accurate estimation of the feedback effects on these Green functions provides an on-the-fly prediction of the flux redistribution in the core, whatever the actual perturbation shape is during the transient. This approach is also used to estimate local feedback effects for point kinetics resolution.

Cite

CITATION STYLE

APA

Laureau, A., Buiron, L., & Fontaine, B. (2017). Local correlated sampling Monte Carlo calculations in the TFM neutronics approach for spatial and point kinetics applications. EPJ Nuclear Sciences & Technologies, 3, 16. https://doi.org/10.1051/epjn/2017011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free