This work presents a compact meandered loop slot-line 5G antenna for Internet of Things (IoT) applications. Recently, sub-gigahertz (sub-GHz) IoT technology is widely spreading. It enables long-range communications with low power consumption. The proposed antenna structure is optimized to operate at sub-GHz bands without any additional complex biasing circuitry or antenna structure. A miniaturized design was achieved by a meandered structured loop slot-line that is loaded reactively with a varactor diode. Wideband frequency reconfigurability (FR) was achieved by the use of the varactor diode. The proposed antenna resonates over the frequency band of 758–1034 MHz with a minimum bandwidth of 17 MHz over the entire frequency band. The RO4350 substrate with dimensions of 0.18λg × 0.13λg mm2 is used to design the proposed antenna design. The efficiency and gain values varied from 54–67% and 0.86–1.8 dBi. Compact planar structure, narrow-band operation (suitable for NB-IoT) and simple biasing circuitry, which allows for sub-GHz operation, are unique and attractive features of the design.
CITATION STYLE
Hussain, R., Alhuwaimel, S. I., Algarni, A. M., Aljaloud, K., & Hussain, N. (2022). A Compact Sub-GHz Wide Tunable Antenna Design for IoT Applications. Electronics (Switzerland), 11(7). https://doi.org/10.3390/electronics11071074
Mendeley helps you to discover research relevant for your work.