Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general.
CITATION STYLE
Liebick, M., Schläger, C., & Oppermann, M. (2016). Analysis of chemokine receptor trafficking by site-specific biotinylation. PLoS ONE, 11(6). https://doi.org/10.1371/journal.pone.0157502
Mendeley helps you to discover research relevant for your work.