A ferroelectric fin diode for robust non-volatile memory

26Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Among today’s nonvolatile memories, ferroelectric-based capacitors, tunnel junctions and field-effect transistors (FET) are already industrially integrated and/or intensively investigated to improve their performances. Concurrently, because of the tremendous development of artificial intelligence and big-data issues, there is an urgent need to realize high-density crossbar arrays, a prerequisite for the future of memories and emerging computing algorithms. Here, a two-terminal ferroelectric fin diode (FFD) in which a ferroelectric capacitor and a fin-like semiconductor channel are combined to share both top and bottom electrodes is designed. Such a device not only shows both digital and analog memory functionalities but is also robust and universal as it works using two very different ferroelectric materials. When compared to all current nonvolatile memories, it cumulatively demonstrates an endurance up to 1010 cycles, an ON/OFF ratio of ~102, a feature size of 30 nm, an operating energy of ~20 fJ and an operation speed of 100 ns. Beyond these superior performances, the simple two-terminal structure and their self-rectifying ratio of ~ 104 permit to consider them as new electronic building blocks for designing passive crossbar arrays which are crucial for the future in-memory computing.

Cite

CITATION STYLE

APA

Feng, G., Zhu, Q., Liu, X., Chen, L., Zhao, X., Liu, J., … Duan, C. (2024). A ferroelectric fin diode for robust non-volatile memory. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-44759-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free