As an efficient patterning method for nanostructures, nanocolloidal lithography (NCL) presents a controllable and scalable means for achieving a uniform and good sidewall profile, and a high aspect ratio. While high selectivity between the etching mask and targeted materials is also essential for NCL-based precision nanophotonic structures, its realization in multi-material nanophotonic structures still remains a challenge due to the dielectric- or metallic-material-dependent etching selectivity. Here, dispersion-controlled Au-NCL is proposed, which enables high selectivity for Al and SiO2 over a Au nanoparticle (Au-NP) mask. Utilizing the proposed process, wafer-scale, uniformly dispersed multi-material nanopawn structures (Au-NPs/Al–SiO2 cylinders) on an Al ultrathin film are realized, obtaining excellent vertical sidewall (≈90°) and aspect ratio (>1). The high sidewall verticality and aspect ratio of the nanopawn structures support optical modes highly sensitive to the excitation direction of incident waves through the mixing of the interface-gap-assisted localized surface plasmons (GLSPs) formed in between the Au-NP and Al-disk interface, and plasmonic Fabry–Pérot (FP) modes formed in between the Al-disk and Al substrate; complementary spectral responses between reflected and scattered light are also demonstrated. As an application example, information encryption based on the triple-channel (i.e., reflection, scattering, and transmission) angle-dependent complementary-color responses is presented.
CITATION STYLE
Park, J., In, S., & Park, N. (2021). Dispersion-Controlled Gold–Aluminum–Silicon Dioxide–Aluminum Nanopawn Structures for Visible to NIR Light Modulation. Advanced Materials, 33(15). https://doi.org/10.1002/adma.202007831
Mendeley helps you to discover research relevant for your work.