The functional and temporal characteristics of top-down modulation in visual selection

64Citations
Citations of this article
149Readers
Mendeley users who have this article in their library.

Abstract

Perceptual load of an attended task influences the processing of irrelevant background stimuli. In a series of behavioral, functional magnetic resonance (fMRI) and electroencephalography (EEG) experiments we examined the influence of working memory (WM) load related to a relevant visual stimulus on the processing of irrelevant backgrounds. We further addressed two open questions about the mechanism of load-dependent modulation: (i) is this modulation dependent on regional activity (i.e. phasic)? (ii) At what processing stage does this modulation take place? Load was manipulated by a WM task and concurrently the processing of irrelevant visual objects was assessed with fMRI and EEG. To examine the dependency of this modulation on intrinsic activity, we varied the activity level of visual areas by presenting objects with different levels of degradation. Activity in the lateral occipital complex (LOC) increased with object visibility and was phasically modulated by WM load. Event related potentials revealed that this phasic modulation occurred ∼170 ms after stimulus onset, indicative of an early selection under high load. The results indicate a phasic modulatory effect of WM load on visual object processing in the LOC that is comparable to the effects found for perceptual load manipulations. © Oxford University Press 2005; all rights reserved.

Author supplied keywords

Cite

CITATION STYLE

APA

Rose, M., Schmid, C., Winzen, A., Sommer, T., & Büchel, C. (2005). The functional and temporal characteristics of top-down modulation in visual selection. Cerebral Cortex, 15(9), 1290–1298. https://doi.org/10.1093/cercor/bhi012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free