The current technological landscape is characterized by the massive and efficient interconnection of heterogeneous devices. Sensor networks (SNs) are key elements of this paradigm; they support the local loop, the collection and early manipulation of information. Among the applications of SNs, event detection is a well-explored topic in which strategies such as collaboration, self-organization, and others have been developed in depth. In this topic, the simplest and also most used event concept approach is the threshold-based event, which is usually integrated as part of the local sensor process. This paper addresses a different perspective by discussing the evaluation of multivariate Boolean conditions with distributed variables. We propose a new algorithm (Data Retaining Algorithm for Condition Evaluation, DRACE) that reduces packet traffic while preserving time accuracy in event calculation on an adaptive approach. To facilitate understanding of DRACE, a case study is presented in the context of a logical simile titled The Problem of a Proper Defense. The algorithm supports parameters that affects the compromise between accuracy and traffic savings. To analyze its performance, 9000 executions of the algorithm have been performed. 9 configurations tested on a repository of 1000 triads of signals randomly generated. Focusing on the most accurate configuration, 99% of executions are error-free, and the number of packets is reduced by 40% on average, being between 30 and 50% in 68% of cases.
CITATION STYLE
León-García, F., Rodríguez-Lozano, F. J., Olivares, J., & Palomares, J. M. (2019). Data communication optimization for the evaluation of multivariate conditions in distributed scenarios. IEEE Access, 7, 123473–123489. https://doi.org/10.1109/ACCESS.2019.2936918
Mendeley helps you to discover research relevant for your work.