Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics

61Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Progression from health to disease is accompanied by complex changes in protein expression in both the circulation and affected tissues. Large-scale comparative interrogation of the human proteome can offer insights into disease biology as well as lead to the discovery of new biomarkers for diagnostics, new targets for therapeutics, and can identify patients most likely to benefit from treatment. Although genomic studies provide an increasingly sharper understanding of basic biological and pathobiological processes, they ultimately only offer a prediction of relative disease risk, whereas proteins offer an immediate assessment of real-time health and disease status. We have recently developed a new proteomic technology, based on modified aptamers, for biomarker discovery that is capable of simultaneously measuring more than a thousand proteins from small volumes of biological samples such as plasma, tissues, or cells. Our technology is enabled by SOMAmers (Slow Off-rate Modified Aptamers), a new class of protein binding reagents that contain chemically modified nucleotides that greatly expand the physicochemical diversity of nucleic acid-based ligands. Such modifications introduce functional groups that are absent in natural nucleic acids but are often found in protein-protein, small molecule-protein, and antibody-antigen interactions. The use of these modifications expands the range of possible targets for SELEX (Systematic Evolution of Ligands by EXponential Enrichment), results in improved binding properties, and facilitates selection of SOMAmers with slow dissociation rates. Our assay works by transforming protein concentrations in a mixture into a corresponding DNA signature, which is then quantified on current commercial DNA microarray platforms. In essence, we take advantage of the dual nature of SOMAmers as both folded binding entities with defined shapes and unique nucleic acid sequences recognizable by specific hybridization probes. Currently, our assay is capable of simultaneously measuring 1,030 proteins, extending to sub-pM detection limits, an average dynamic range of each analyte in the assay of >3 logs, an overall dynamic range of at least 7 logs, and a throughput of one million analytes per week. Our collection includes SOMAmers that specifically recognize most of the complement cascade proteins. We have used this assay to identify potential biomarkers in a range of diseases such as malignancies, cardiovascular disorders, and inflammatory conditions. In this chapter, we describe the application of our technology to discovering large-scale protein expression changes associated with chronic kidney disease and non-small cell lung cancer. With this new proteomics technologywhich is fast, economical, highly scalable, and flexiblewe now have a powerful tool that enables whole-proteome proteomics, biomarker discovery, and advancing the next generation of evidence-based, personalized diagnostics and therapeutics. © 2013 Springer Science+Business Media New York.

Cite

CITATION STYLE

APA

Mehan, M. R., Ostroff, R., Wilcox, S. K., Steele, F., Schneider, D., Jarvis, T. C., … Janjic, N. (2013). Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics. In Advances in Experimental Medicine and Biology (Vol. 734, pp. 283–300). Springer New York LLC. https://doi.org/10.1007/978-1-4614-4118-2_20

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free