Drought, ozone (O3), and nitrogen deposition (N) alter foliar pigments and tree crown structure that may be remotely detectable. Remote sensing tools are needed that pre-emptively identify trees susceptible to environmental stresses could inform forest managers in advance of tree mortality risk. Jeffrey pine, a component of the economically important and widespread western yellow pine in North America was investigated in the southern Sierra Nevada. Transpiration of mature trees differed by 20% between microsites with adequate (mesic (M)) vs. limited (xeric (X)) water availability as described in a previous study. In this study, in-the-crown morphological traits (needle chlorosis, branchlet diameter, and frequency of needle defoliators and dwarf mistletoe) were significantly correlated with aerially detected, sub-crown spectral traits (upper crown NDVI, high resolution (R), near-infrared (NIR) Scalar (inverse of NDVI) and THERM D, and the difference between upper and mid crown temperature). A classification tree model sorted trees into X and M microsites with THERM D alone (20% error), which was partially validated at a second site with only mesic trees (2% error). Random forest separated M and X site trees with additional spectra (17% error). Imagery taken once, from an aerial platform with sub-crown resolution, under the challenge of drought stress, was effective in identifying droughted trees within the context of other environmental stresses.
CITATION STYLE
Grulke, N., Maxfield, J., Riggan, P., & Schrader-Patton, C. (2020). Pre-emptive detection of mature pine drought stress using multispectral aerial imagery. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142338
Mendeley helps you to discover research relevant for your work.