Improving End-To-End Latency Fairness Using a Reinforcement-Learning-Based Network Scheduler

0Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

In services such as metaverse, which should provide a constant quality of service (QoS) regardless of the user’s physical location, the end-to-end (E2E) latency must be fairly distributed over any flow in the network. To this end, we propose a reinforcement learning (RL)-based scheduler for minimizing the maximum network E2E latency. The RL model used the double deep Q-network (DDQN) with the prioritized experience replay (PER). In order to see the performance change according to the type of RL agent, we implemented a single-agent environment where the controller is an agent and a multi-agent environment where each node is an agent. Since the agents were unable to identify E2E latencies in the multi-agent environment, the state and reward were formulated using the estimated E2E latencies. To precisely evaluate the RL-based scheduler, we set out benchmark algorithms to compare with which a network-arrival-time-based heuristic algorithm (NAT-HA) and a maximum-estimated-delay-based heuristic algorithm (MED-HA). The RL-based scheduler, first-in-first-out (FIFO), round-robin (RR), NAT-HA, and MED-HA were compared through large-scale simulations on four network topologies. The simulation results in fixed-packet generation scenarios showed that our proposal, the RL-based scheduler, achieved the minimization of maximum E2E latency in all the topologies. In other scenarios with random flow generation, the RL-based scheduler and MED-HA showed the lowest maximum E2E latency for all topologies. Depending on the topology, the maximum E2E latency of NAT-HA was equal to or larger than that of the RL-based scheduler. In terms of fairness, the RL-based scheduler showed a higher level of fairness than that of FIFO and RR. NAT-HA had similar or lower fairness than the RL-based scheduler depending on the topology, and MED-HA had the same level of fairness as the RL-based scheduler.

Cite

CITATION STYLE

APA

Kwon, J., Ryu, J., Lee, J. H., & Joung, J. (2023). Improving End-To-End Latency Fairness Using a Reinforcement-Learning-Based Network Scheduler. Applied Sciences (Switzerland), 13(6). https://doi.org/10.3390/app13063397

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free