ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2

135Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Here, we describe the initial characterization of Abcg4-/- mice and identify overlapping functions of ABCG4 and ABCG1 in the brain. Histological examination of tissues from Abcg4+/-/nlsLacZ and Abcg1 +/-/nlsLacZ mice demonstrates that coexpression of Abcg4 and Abcg1 is restricted to neurons and astrocytes of the central nervous system (CNS). Interestingly, Abcg4 mRNA is undetectable outside the CNS, in contrast with the broad tissue and cellular expression of Abcg1. We also used primary astrocytes, microglia, neurons, and macrophages to demonstrate that the expression of Abcg1, but not Abcg4, is induced after the activation of liver X receptor. Cellular localization studies demonstrated that both proteins reside in RhoB-positive endocytic vesicle membranes. Furthermore, overexpression of either ABCG1 or ABCG4 increased the processing of sterol-regulatory element binding protein 2 (SREBP-2) to the transcriptionally active protein, thus accounting for the observed increase in the expression of SREBP-2 target genes and cholesterol synthesis. Consistent with these latter results, we show that the expression levels of the same SREBP-2 target genes are repressed in the brains of Abcg1-/- and, to a lesser extent, Abcg4-/- mice. Based on the results of the current study, we propose that ABCG1 and ABCG4 mediate the intracellular vesicular transport of cholesterol/sterols within both neurons and astrocytes to regulate cholesterol transport in the brain. Copyright ©2008 by the American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Tarr, P. T., & Edwards, P. A. (2008). ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2. Journal of Lipid Research, 49(1), 169–182. https://doi.org/10.1194/jlr.M700364-JLR200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free