Evaluation of La1−xSrxNi0.4Fe0.6O3-δ as Electrode Materials for Direct Methane Symmetrical Solid Oxide Fuel Cells

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

In this work, La1−xSrxNi0.4Fe0.6O3-δ (0 ≤ x ≤ 0.2) oxides were synthesized and employed as the identical electrode of direct methane symmetrical solid oxide fuel cell (SSOFC). In addition, the phase structure, redox stability, electrical conductivity, chemical compatibility, and thermal expansion of La1−xSrxNi0.4Fe0.6O3-δ oxides were evaluated. The La2NiO4 phase occurs when the amount of doped Sr rises to 0.2. The composition of La0.9Sr0.1Ni0.4Fe0.6O3-δ (LSNF9146) boasts the highest conductivity of 463 S cm−1 with lowest activation energy of 0.066 eV as well as a relatively large thermal expansion coefficient. After treatment in methane for 10 h, the LSNF9146 oxide exhibits 33% lower carbon deposition than the LaNi0.4Fe0.6O3-δ (LNF46) oxide. Moreover, the impregnated LSNF9146 electrode demonstrates lower polarization resistance in both air and methane atmospheres. SSOFCs with impregnated LSNF9146 and LNF46 identical composite electrodes have the maximum power densities of 233 and 170 mW cm−2 at 850 °C in methane, respectively. These results prove that LSNF9146 is a promising symmetrical electrode with high catalytic activity, good redox stability, and coking resistance to direct methane SSOFCs.

Cite

CITATION STYLE

APA

Shi, C., Chen, T., Fang, D., & Wang, S. (2023). Evaluation of La1−xSrxNi0.4Fe0.6O3-δ as Electrode Materials for Direct Methane Symmetrical Solid Oxide Fuel Cells. Crystals, 13(1). https://doi.org/10.3390/cryst13010152

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free