The processes involved in ribosome biogenesis, including synthesis of ribosomal proteins, ribosome biogenesis-related factors, and ribosomal RNAs (rRNAs), must be coordinately orchestrated in response to changes in energy supply. In animal cells, defects in ribosome biogenesis induce a nucleolar stress response through the p53-mediated pathway. Our recent finding that an essential, sugar-inducible Arabidopsis gene, APUM24, encoded a pre-rRNA processing factor allowed the relationships between rRNA biogenesis, nucleolar stress, sugar response, and growth regulation to be understood in plants. A knockdown mutant of APUM24 developed sugar-dependent phenotypes including pre-rRNA processing defects, reductions in nucleolar size, and limited promotion of leaf and root growth. Alongside the absence of plant p53 homologs and the synchronous sugar-induced expression of ribosome biogenesis-related genes, these findings suggest the following hypothesis. Sugar supply may enhance ribosome biogenesis defects, leading to p53-independent induction of nucleolar stress responses that include negative regulation of growth and development in plants.
CITATION STYLE
Maekawa, S., & Yanagisawa, S. (2018). Nucleolar stress and sugar response in plants. Plant Signaling & Behavior, 13(3), e1442975. https://doi.org/10.1080/15592324.2018.1442975
Mendeley helps you to discover research relevant for your work.