Although various local anti-inflammatory therapies for ulcerative colitis have been developed, rapid drug elimination from inflamed colitis tissue and off-target side effects reduce their therapeutic efficacy. In this study, we synthesized curcumin (Cur)-loaded hyaluronic acid (HA)-conjugated nanoparticles (Cur-HA-PLGA-NPs) that target inflamed colitis tissue via HA-CD44 interaction with resident colonic epithelial cells and subsequently target activated macrophages for ulcerative colitis therapy. The synthesized spherical Cur-HA-PLGA-NPs showed physicochemical properties similar to those of non-HA-conjugated Cur-PLGA-NPs. HA-PLGA-NPs exhibited selective accumulation in inflamed colitis tissue with minimal accumulation in healthy colon tissue. HA functionalization enhanced targeted drug delivery to intestinal macrophages, significantly increasing HA-PLGA-NP cellular uptake. Importantly, the rectal administration of Cur-HA-PLGA-NPs exhibited better therapeutic efficacy than Cur-PLGA-NPs in animal studies. Histological examination revealed that Cur-HA-PLGA-NPs reduced inflammation with less inflammatory cell infiltration and accelerated recovery with re-epithelialization signs. Our results suggest that Cur-HA-PLGA-NPs are a promising delivery platform for treating ulcerative colitis.
CITATION STYLE
Hlaing, S. P., Cao, J., Lee, J., Kim, J., Saparbayeva, A., Kwak, D., … Yoo, J. W. (2022). Hyaluronic Acid-Conjugated PLGA Nanoparticles Alleviate Ulcerative Colitis via CD44-Mediated Dual Targeting to Inflamed Colitis Tissue and Macrophages. Pharmaceutics, 14(10). https://doi.org/10.3390/pharmaceutics14102118
Mendeley helps you to discover research relevant for your work.