Despite successful applications of solution-processed organic-inorganic hybrid perovskites (OIHPs) such as archetypical methylammonium lead iodide (MAPI) in high-performance optoelectronic devices including solar cells and light emitting diodes, their application in field-effect transistors (FETs) remains relatively limited due to the unresolved issues caused by ion migration in OIHPs, such as screening of gate electric fields, lowered device on-off ratios and field-effect mobility, and large hysteresis in the FET transfer characteristics. Here, we report improved performances of the MAPI-based FET via a polymer-additive-based grain boundary (GB) passivation approach that suppresses the ion migration. Polycaprolactone (PCL) was incorporated into the MAPI FET as a GB-passivation additive as confirmed by scanning electron and atomic force microscopies. Unlike the typical n-type behavior and large transfer hysteresis in the starting, pristine MAPI FETs, the GB passivation by PCL led to a drastically reduced hysteresis in FET transfer characteristics, while hinting at an ambipolar transport and slight improvement in mobility, indicating a reduced ion migration in the PCL-incorporated MAPI FET. The effect of PCL GB passivation in suppressing ion migration was directly confirmed by the measured, increased activation energy for ion migration in the PCL-incorporated MAPI. The results not only represent the first report of the polymer-additive-based mitigation of the ion migration in the MAPI FET but also suggest potential utilities of the approach for enabling high-performance OIHP FETs and electronic devices in general.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Zhou, Y., Tiwale, N., Yin, Y., Subramanian, A., Rafailovich, M. H., & Nam, C. Y. (2021). Effects of polymer grain boundary passivation on organic-inorganic hybrid perovskite field-effect transistors. Applied Physics Letters, 119(18). https://doi.org/10.1063/5.0065164