Competing interactions in dna assembly on graphene

87Citations
Citations of this article
91Readers
Mendeley users who have this article in their library.

Abstract

We study the patterns that short strands of single-stranded DNA form on the top graphene surface of graphite. We find that the DNA assembles into two distinct patterns, small spherical particles and elongated networks. Known interaction models based on DNA-graphene binding, hydrophobic interactions, or models based on the purine/pyrimidine nature of the bases do not explain our observed crossover in pattern formation. We argue that the observed assembly behavior is caused by a crossover in the competition between base-base pi stacking and base-graphene pi stacking and we infer a critical crossover energy of 0.3-0.5 eV. The experiments therefore provide a projective measurement of the base-base interaction strength. © 2011 Akca et al.

Cite

CITATION STYLE

APA

Akca, S., Foroughi, A., Frochtzwajg, D., & Postma, H. W. C. (2011). Competing interactions in dna assembly on graphene. PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018442

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free