Effect of laser ablation on microwave attenuation properties of diamond films

7Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Thermal conductivity is required for developing high-power microwave technology. Diamond has the highest thermal conductivity in nature. In this study, a diamond film was synthesized by microwave plasma chemical deposition, and then long and short conductive graphite fibers were introduced to the diamond films by laser ablation. The permittivity of the samples in the K-band was measured using the transmission/reflection method. The permittivity of diamond films with short graphite fibers increased. The increase in real part of permittivity can be attributed to electron polarization, and the increase in the imaginary part can be ascribed to both polarization and electrical conductivity. The diamond films with long graphite fibers exhibited a highly pronounced anisotropy for microwave. The calculation of microwave absorption shows that reflection loss values exceeding-10 dB can be obtained in the frequency range of 21.3-23.5 GHz when the graphite fiber length is 0.7 mm and the sample thickness is 2.5 mm. Therefore, diamond films can be developed into a microwave attenuation material with extremely high thermal conductivity.

Cite

CITATION STYLE

APA

Ding, M., Liu, Y., Lu, X., & Tang, W. (2019). Effect of laser ablation on microwave attenuation properties of diamond films. Materials, 12(22). https://doi.org/10.3390/ma12223700

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free