We have recently demonstrated that basophils are protective against intestinal permeability during malaria and contribute to reduced parasite transmission to mosquitoes. Given that IL-18 is an early cytokine/alarmin in malaria and has been shown to activate basophils, we sought to determine the role of the basophil IL-18R in this protective phenotype. To address this, we infected control [IL18rflox/flox or basoIL-18R (+)] mice and mice with basophils lacking the IL-18R [IL18rflox/flox × Basoph8 or basoIL-18R (−)] with Plasmodium yoelii yoelii 17XNL, a nonlethal strain of mouse malaria. Postinfection (PI), intestinal permeability, ileal mastocytosis, bacteremia, and levels of ileal and plasma cytokines and chemokines were measured through 10 d PI. BasoIL-18R (−) mice exhibited greater intestinal permeability relative to basoIL-18R (+) mice, along with increased plasma levels of proinflammatory cytokines at a single time point PI, day 4 PI, a pattern not observed in basoIL-18R (+) mice. Surprisingly, mosquitoes fed on basoIL-18R (−) mice became infected less frequently than mosquitoes fed on basoIL-18R (+) mice, with no difference in gametocytemia, a pattern that was distinct from that observed previously with basophil-depleted mice. These findings suggest that early basophil-dependent protection of the intestinal barrier in malaria is mediated by IL-18, and that basophil IL-18R–dependent signaling differentially regulates the inflammatory response to infection and parasite transmission.
CITATION STYLE
Donnelly, E. L., Céspedes, N., Hansten, G., Wagers, D., Briggs, A. M., Lowder, C., … Luckhart, S. (2022). The Basophil IL-18 Receptor Precisely Regulates the Host Immune Response and Malaria-Induced Intestinal Permeability and Alters Parasite Transmission to Mosquitoes without Effect on Gametocytemia. ImmunoHorizons, 6(8), 630–641. https://doi.org/10.4049/immunohorizons.2200057
Mendeley helps you to discover research relevant for your work.