Covalent organic frameworks (COFs), as a novel crystalline porous adsorbent, have been attracting significant attention for their synthesis and application exploration due to the advantages of designability, stability, and functionalization. Herein, through increasing the concentration of the acid catalyst, a facile solution-refluxing synthesis method was developed for the preparation of a three-dimensional dynamic COF material, COF-300, with high yields (>90%) and high space–time yields (>28 kg m–3 day–1). This synthesis method not only permits gram-scale synthesis, but also yields products that well maintain porosity and unique guest-dependent dynamic behavior. Moreover, the catalytic activity of COF-300 as a metal-free photocatalyst was explored for the first time. Under 365 nm ultra-violet light irradiation, COF-300 can effectively catalyze the dye degradation (>99%) in wastewater with good recyclability. By adding magnetic Fe3O4 nanoparticles into the solution-refluxing synthesis of COF-300, Fe3O4/COF-300 nanocomposites can be obtained and used as magnetically recyclable photocatalysts, demonstrating the superiority of this facile synthesis procedure. Our study provides new insights for the preparation of COF materials and a constructive exploration for their water treatment application.
CITATION STYLE
Wang, X. L., Sun, Y. Y., Xiao, Y., Chen, X. X., Huang, X. C., & Zhou, H. L. (2022). Facile Solution-Refluxing Synthesis and Photocatalytic Dye Degradation of a Dynamic Covalent Organic Framework. Molecules, 27(22). https://doi.org/10.3390/molecules27228002
Mendeley helps you to discover research relevant for your work.