Comparative metagenomic analysis from Sundarbans ecosystems advances our understanding of microbial communities and their functional roles

0Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Sundarbans mangrove, located at the mouth of the Ganges and Brahmaputra Rivers, is the world’s largest tidal mangrove forest. These mangroves are also one of the most striking sources of microbial diversity, essential in productivity, conservation, nutrient cycling, and rehabilitation. Hence, the main objective of this study was to use metagenome analysis and provide detailed insight into microbial communities and their functional roles in the Sundarbans mangrove ecosystem. A comparative analysis was also done with a non-mangrove region of the Sundarbans ecosystem to assess the capability of the environmental parameters to explain the variation in microbial community composition. The study found several dominant bacteria, viz., Alphaproteobacteria, Actinomycetota, Bacilli, Clostridia, Desulfobacterota, Gammaproteobacteria, and Nitrospira, from the mangrove region. The mangrove sampling site reports several salt-tolerant bacteria like Alkalibacillus haloalkaliphilus, Halomonas anticariensis, and Salinivibrio socompensis. We found some probiotic species, viz., Bacillus clausii, Lactobacillus curvatus, Vibrio mediterranei and Vibrio fluvialis, from the Sundarbans mangrove. Nitrifying bacteria in Sundarbans soils were Nitrococcus mobilis, Nitrosococcus oceani, Nitrosomonas halophila, Nitrospirade fluvii, and others. Methanogenic archaea, viz., Methanoculleus marisnigri, Methanobrevibacter gottschalkii, and Methanolacinia petrolearia, were highly abundant in the mangroves as compared to the non-mangrove soils. The identified methanotrophic bacterial species, viz., Methylobacter tundripaludum, Methylococcus capsulatus, Methylophaga thiooxydans, and Methylosarcina lacus are expected to play a significant role in the degradation of methane in mangrove soil. Among the bioremediation bacterial species identified, Pseudomonas alcaligenes, Pseudomonas mendocina, Paracoccus denitrificans, and Shewanella putrefaciens play a significant role in the remediation of environmental pollution. Overall, our study shows for the first time that the Sundarbans, the largest mangrove ecosystem in the world, has a wide range of methanogenic archaea, methanotrophs, pathogenic, salt-tolerant, probiotic, nitrifying, and bioremediation bacteria.

Cite

CITATION STYLE

APA

Das, B. K., Chakraborty, H. J., Kumar, V., Rout, A. K., Patra, B., Das, S. K., & Behera, B. K. (2024). Comparative metagenomic analysis from Sundarbans ecosystems advances our understanding of microbial communities and their functional roles. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-67240-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free