The effects of grain type and processing on ruminal starch digestion are well documented but poorly understood at the biochemical and molecular levels. Waxy grains have starches high in amylopectin and are more readily digested than nonwaxy grains. However, the composition of the endosperm cell matrix and the extent to which the starch granules are embedded within it also affect starch digestion rates. Continued work is needed to determine the influence of specific cell matrix proteins, protein-starch interactions and cell wall carbohydrates on starch availability. The microbial populations that metabolize starch are diverse, differing in their capacities to hydrolyze starch granules and soluble forms of starch. Surveys show that the amylases are under regulatory control in most of these organisms, but few studies have addressed the types of amylolytic enzymes produced, their regulation and the impact of other plant polymers on their synthesis. Research in these areas, coupled with the development and use of isogeneic or near-isogeneic grain cultivars with biochemically defined endosperm characteristics, will enhance our ability to identify mechanisms to manipulate ruminal starch digestion.
CITATION STYLE
Kotarski, S. F., Waniska, R. D., & Thurn, K. K. (1992). Starch hydrolysis by the ruminal microflora. In Journal of Nutrition (Vol. 122, pp. 178–190). https://doi.org/10.1093/jn/122.1.178
Mendeley helps you to discover research relevant for your work.