Maximal regularity for gradient systems with boundary degeneracy

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We study a class of elliptic operators L that degenerate at the boundary of a bounded open set O ⊂ ℝ d and possess a symmetrizing invariant measure μ. Such operators are associated with diffusion processes in O which are invariant for time reversal. After showing that the corresponding elliptic equation λφ - Lφ = f has a unique weak solution for any λ > 0 and f ∈ L 2 (O, μ), we obtain new results for the characterization of the domain of L.

Cite

CITATION STYLE

APA

Cannarsa, P., Da Prato, G., Metafune, G., & Pallara, D. (2015). Maximal regularity for gradient systems with boundary degeneracy. Atti Della Accademia Nazionale Dei Lincei, Classe Di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 26(2), 135–149. https://doi.org/10.4171/RLM/698

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free