Developing an FHIR-Based Computational Pipeline for Automatic Population of Case Report Forms for Colorectal Cancer Clinical Trials Using Electronic Health Records

  • Zong N
  • Wen A
  • Stone D
  • et al.
23Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

Abstract

PURPOSE The Fast Healthcare Interoperability Resources (FHIR) is emerging as a next-generation standards framework developed by HL7 for exchanging electronic health care data. The modeling capability of FHIR in standardizing cancer data has been gaining increasing attention by the cancer research informatics community. However, few studies have been conducted to examine the capability of FHIR in electronic data capture (EDC) applications for effective cancer clinical trials. The objective of this study was to design, develop, and evaluate an FHIR-based method that enables the automation of the case report forms (CRFs) population for cancer clinical trials using real-world electronic health records (EHRs). MATERIALS AND METHODS We developed an FHIR-based computational pipeline of EDC with a case study for modeling colorectal cancer trials. We first leveraged an existing FHIR-based cancer profile to represent EHR data of patients with colorectal cancer, and then we used the FHIR Questionnaire and QuestionnaireResponse resources to represent the CRFs and their data population. To test the accuracy of and overall quality of the computational pipeline, we used synoptic reports of 287 Mayo Clinic patients with colorectal cancer from 2013 to 2019 with standard measures of precision, recall, and F1 score. RESULTS Using the computational pipeline, a total of 1,037 synoptic reports were successfully converted as the instances of the FHIR-based cancer profile. The average accuracy for converting all data elements (excluding tumor perforation) of the cancer profile was 0.99, using 200 randomly selected records. The average F1 score for populating nine questions of the CRFs in a real-world colorectal cancer trial was 0.95, using 100 randomly selected records. CONCLUSION We demonstrated that it is feasible to populate CRFs with EHR data in an automated manner with satisfactory performance. The outcome of the study provides helpful insight into future directions in implementing FHIR-based EDC applications for modern cancer clinical trials.

Cite

CITATION STYLE

APA

Zong, N., Wen, A., Stone, D. J., Sharma, D. K., Wang, C., Yu, Y., … Jiang, G. (2020). Developing an FHIR-Based Computational Pipeline for Automatic Population of Case Report Forms for Colorectal Cancer Clinical Trials Using Electronic Health Records. JCO Clinical Cancer Informatics, (4), 201–209. https://doi.org/10.1200/cci.19.00116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free