Long chain fatty acyl glycines represent a new class of signaling molecules whose biosynthetic pathway is unknown. Here we report that cytochrome c catalyzes the formation of oleoylglycine from oleoyl-CoA and glycine, in the presence of hydrogen peroxide. The identity of oleoylglycine product was confirmed by isotope labeling and fragmentation mass spectrometry. Synthesis of oleoylglycine by cytochrome c was dependent upon substrate concentration and time. Other heme-containing proteins, myoglobin and hemoglobin, did not catalyze oleoylglycine synthesis. The functional properties of the reaction closely resemble those observed for the ability of cytochrome c to mediate the synthesis of oleamide from oleoyl-CoA and ammonia, in the presence of hydrogen peroxide (Driscoll, W. J., Chaturvedi., S., and Mueller, G. P. (2007) J. Biol. Chem. 282). The ability of cytochrome c to catalyze the formation of oleoylglycine experimentally indicates the potential importance of cytochrome c as a novel mechanism for the generation of long chain fatty acyl glycine messengers in vivo.
CITATION STYLE
Mueller, G. P., & Driscoll, W. J. (2007). In vitro synthesis of oleoylglycine by cytochrome c points to a novel pathway for the production of lipid signaling molecules. Journal of Biological Chemistry, 282(31), 22364–22369. https://doi.org/10.1074/jbc.M701801200
Mendeley helps you to discover research relevant for your work.