Variation in egg size and offspring phenotype among and within seven Arctic charr morphs

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Maternal effects have the potential to alter early developmental processes of offspring and contribute to adaptive diversification. Egg size is a major contributor to offspring phenotype, which can influence developmental trajectories and potential resource use. However, to what extent intraspecific variation in egg size facilitates evolution of resource polymorphism is poorly understood. We studied multiple resource morphs of Icelandic Arctic charr, ranging from an anadromous morph—with a phenotype similar to the proposed ancestral phenotype—to sympatric morphs that vary in their degree of phenotypic divergence from the ancestral anadromous morph. We characterized variation in egg size and tested whether egg size influenced offspring phenotype at early life stages (i.e., timing of- and size at- hatching and first feeding [FF]). We predicted that egg size would differ among morphs and be less variable as morphs diverge away from the ancestral anadromous phenotype. We also predicted that egg size would correlate with offspring size and developmental timing. We found morphs had different egg size, developmental timing, and size at hatching and FF. Egg size increased as phenotypic proximity to the ancestral anadromous phenotype decreased, with larger eggs generally giving rise to larger offspring, especially at FF, but egg size had no effect on developmental rate. The interaction between egg size and the environment may have a profound impact on offspring fitness, where the resulting differences in early life-history traits may act to initiate and/or maintain resource morphs diversification.

Cite

CITATION STYLE

APA

Beck, S. V., Räsänen, K., Kristjánsson, B. K., Skúlason, S., Jónsson, Z. O., Tsinganis, M., & Leblanc, C. A. (2022). Variation in egg size and offspring phenotype among and within seven Arctic charr morphs. Ecology and Evolution, 12(10). https://doi.org/10.1002/ece3.9427

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free